

Welcome to bitnest’s documentation!

Contents:

	Contributing
	Architecture

	Internal AST Nodes

	Python DSL

	Passes

	Design Document
	Conditional Nested Data Structures

	Background

	Implementation

Indices and tables

	Index

	Module Index

	Search Page

Contributing

Architecture

At a high level bitnest is a compiler that generates parsers for
binary data. Compilers can be represented in three sections frontend,
transform, backend. In literature the transform step is usually
referred to as term-rewriting.

Frontend

In the case of Bitnest the frontend is a python domain specific
language (DSL). This was chosen because of the burden on creating new
languages and that python is flexible enough to accurately represent
the relationship between structs, fields, vectors, and unions. Great
examples of these are in the models
directory [https://github.com/MetroStar/bitnest/tree/master/models]. Once
a binary structure is represented in the model it is quickly converted
into an internal AST done in
bitnest/field.py [https://github.com/MetroStar/bitnest/blob/master/bitnest/field.py]. The
internal AST structures is simply a nesting of python tuples. Why such
a simple structure? This simple structure makes the later stages much
easier to handle. And in my opinion where LISP shines. These nested
tuple structures are wrapped in the Expression
class [https://github.com/MetroStar/bitnest/blob/master/bitnest/core.py#L53]
which allows for the pythonic construction of the AST. Sometimes this
class makes it easier to build a tree. For example suppose we have
1 + a. In the internal AST this would be represented as

Expression((Symbol("add"), (Symbol("integer"), 1), (Symbol("variable"), "a")))

We can easily construct this using bitnest.core via Integer(1) + Variable("a").

Transform/Analysis

Now that we have an internal AST we need to transform and analyze the
AST. Often times it can be confusing when working with the internal
AST since it is hard to keep track of the passes being made and where
we are in the process. To help with this we have adopted the LLVM
approach [https://llvm.org/docs/Passes.html] to working with the
AST. We can think of each transformation as a logical pass over the
tree. Within bitnest there are three types of passes.

The analysis pass will not modify the internal AST. It will analyze
the AST and return information in python datastructures. See
bitnest/analysis [https://github.com/MetroStar/bitnest/tree/master/bitnest/analysis]. An
example is inspect_datatypes.py which returns the fields within each
datatype, conditions for each datatype, and other useful information
for understanding the AST.

The transform pass will modify the internal AST. The modifications
can be simpler such as (Symbol("add"), (Symbol("integer"), 1), (Symbol("add"), (Symbol("integer"), 2), (Symbol("integer"), 3))) to
(Symbol("add"), (Symbol("integer"), 2), (Symbol("integer"), 3). The
idea is to convert (+ 1 (+ 2 3)) to (+ 1 2 3). This is just one
example of a transformation. This transformation is done in
bitnest/transform/arithmetic_simplify.py [https://github.com/MetroStar/bitnest/blob/master/bitnest/transform/arithmetic_simplify.py].

Finally we have the backend. This pass takes the internal AST after
several transformations and generates code that can then be executed
independent of the compiler. The simplest example of this is the
bitnest/backend/python.py [https://github.com/MetroStar/bitnest/blob/master/bitnest/backend/python.py]. This
will convert for example (Symbol("add"), (Symbol("integer"), 1), (Symbol("integer"), 2)) into ast.BinOp(ast.Add(), 1, 2) into (1 + 2). Here bitnest lowers the internal AST into the python ast which
then gets written to python source code.

It is common for multiple passes to be performed. Each pass through
the tree is done in a specific order. Using the following labeling
node N, left most child node L, right most child node R. See
tree traversal [https://en.wikipedia.org/wiki/Tree_traversal]
currently pre-order (NL->R) and post-order (L->RN) are being used. In
some cases both are used together (see
bitnest/transform/realize_offsets.py [https://github.com/MetroStar/bitnest/blob/master/bitnest/transform/realize_offsets.py]
which visit in the following pattern (NL->RN).

Backend

The backend as mentioned previously is responsible for generating
executable code. The first example of this the python backend
bitnest/backend/python.py [https://github.com/MetroStar/bitnest/blob/master/bitnest/backend/python.py]. However,
are being written for more efficient execution.

End-To-End Example

Take the following example of a MILSTD 1553 Packet

from models.simple import MILSTD_1553_Message

MILSTD_1553_Message.expression() \
 .transform("realize_datatypes") \
 .transform("realize_conditions") \
 .transform("realize_offsets") \
 .transform("parser_datatype") \
 .transform("arithmetic_simplify") \
 .backend("python")

Will generate the following code. Currently simple output but this
will improve over time.

__datatype_mask = 0
if __bits[8:13] == 31:
 __datatype_mask = __datatype_mask | 1
if __bits[13:16] == 0:
 __datatype_mask = __datatype_mask | 2

Internal AST Nodes

Bitnest uses a LISP like internal representation of the abstract
syntax tree (ast). In this section we will describe the structure of
each of these nodes. At a high level there are three types of
nodes. Arithmetic nodes deal with math operations on
variables. Field nodes are data representations of the structure and
relationship between structures. Finally Programming nodes are used
near the end of the AST transformation to represent things that are
necessary for representing programs to process the structures.

Arithmetic Nodes

	unary operation: invert not

	logical and logical_and, logical or logical_or

	bitwise and bit_and, bitwise or bit_or

	addition add, subtraction sub, multiply mul, floor divide floordiv, true divide truediv all support N arguments (<op> <1> ... <N>)

	modulus mod

	equal eq, not equal ne, less than lt, greater than gt, less than equal le, greater than equal ge

	integer integer

	float float

	enum enum

Field Nodes

	field is sequential bits not necessarily byte aligned. There are
many Field subclasses such as UnsignedInteger, SignedInteger,
Bits, etc. which is represented by a

	struct is an ordered collection of Fields, Union of Structs, and
Vectors or Structs

	union is a set of Struct’s

	vector is N repeats of a given Struct represented as (Symbol('vector'), <Struct> <length>)

	datatype is a representation of a concrete structure (without
union in the tree) important for reasoning about the size of a
structure. Generated in the realize_datatype transform pass.

Programming Nodes

	quote is to protect it’s arg from evaluation (not used much in
bitnest) but a valuable concept in lisp (quote (...))

	list defined a list of N elements (represented as the args)
(list <1> ... <N>)

	assign meant for assignment statements e.g. (assign (variable a) (integer 1)) which is equivalent to a = 1.

	variable which represents a given variable in the code that does
not have a set value. (variable "<name>").

	for convenience there is a UniqueVariable() constructor that is
guaranteed to generate a unique variable name. Not used at the
moment but a critical function needed for some AST transformation.

	if for representing conditional statements to execute `(if (eq 1

	(assign (variable a) (integer 10)))which is equivalent toif
(1 == 1): a = 10`. Currently else not implemented but may be
valuable.

	statements is a way of representing a list of
statements. (statement (assign (variable a) (integer 10)) (assign (variable a) (add (variable a) (integer 20)))) which is equivalent
to a = 10; a = a + 20.

	index for indexing into a vector done via (index (variable a) (integer 20) (integer 30)) which is equivalent to a[20:30].

Python DSL

Suppose we have the simple structure. In python

class StructB(Struct):
 """All about StructB description"""

 name = "StructB"
 fields = [
 SignedInteger(name="FieldB", size=8, help="info about FieldB")
]

 conditions = [
 FieldReference('FieldB') == 0x10
]

class StructC(Struct):
 """All about StructB description"""

 name = "StructC"
 fields = [
 SignedInteger(name="FieldC", size=8, help="info about FieldC")
]

class StructA(Struct):
 """All about StructA description"""

 name = "StructA"
 fields = [
 Bits(name="FieldA", size=4, help="info about FieldA"),
 Union(StructB, StructC),
]

Get converted into the following lisp like structure. The structure
can be thought of an the bitnest internal representation of a nested
binary structure. Mentioned previously this list structure is wrapped
in a bitnest.core.Expression object which allows for interacting
with this structure in a more pythonic way.

StructA.expression()

(struct, 'StructA',
 (list,
 (field, 'bits', 'FieldA', None, (integer, 4), None, {'help': 'info about FieldA'}),
 (union,
 (struct, 'StructB',
 (list,
 (field, 'signed_integer', 'FieldB', None, (integer, 8), None, {'help': 'info about FieldB'})),
 (list,
 (eq, (field_reference, 'FieldB', None), (integer, 16))),
 {'help': 'All about StructB description'}),
 (struct, 'StructC',
 (list,
 (field, 'signed_integer', 'FieldC', None, (integer, 8), None, {'help': 'info about FieldC'})),
 (list,),
 {'help': 'All about StructB description'}))),
 (list,),
 {'help': 'All about StructA description'})

Passes

Once the structure has been formed there are many transform, analysis,
and backend passes that can be done.

Transform Pass

Realize DataTypes

This transformation plays an important role and is usually the first
transform that takes place. Its job is to calculate all the complete
datatypes that can exist from a nested set of structs along with
uniquely identifying each field in the structure. This pass is a post
order traversal of the AST. Each field encountered is numbered and
since the traversal is deterministic the field id is deterministic as
well.

The first point of calculating all the paths that result in unique
datatypes deserves more discussion. Take for example the
representative Struct below. Each path through the structure
represents the construction of a datatype.

class StructB(Struct):
 """All about StructB description"""

 name = "StructB"
 fields = [
 UnsignedInteger(name="FieldB", size=8, help="info about FieldB")
 Vector(StructD, length=FieldReference('FieldB'))
]

 conditions = [
 FieldReference('FieldB') == 0x10
]

class StructD(Struct):
 """All about StructD description"""

 name = "StructD"
 fields = [
 SignedInteger(name="FieldD", size=8, help="info about FieldD")
]

class StructC(Struct):
 """All about StructC description"""

 name = "StructC"
 fields = [
 SignedInteger(name="FieldC", size=8, help="info about FieldC")
]

class StructA(Struct):
 """All about StructA description"""

 name = "StructA"
 fields = [
 Bits(name="FieldA", size=4, help="info about FieldA"),
 Union(StructB, StructC),
]

Here is the general algorithm. When you encounter:

	field node (field ...) this is a leaf node and results in one path.

	union node (union [<s1>] ... [<s2>]) a union node results in the
addition of each path in the union. Suppose (union [5] [3] [2])
where each element of the union has 5, 3, 2 paths then it will
result in 9 total paths. We simply merge each path.

	vector node (vector [<s1>] length) preserves the number of paths
in [<s1>] thus if there were 4 paths then the application of
vector would result in 4 paths.

	struct node is the last an most tricky one to handle. Suppose we
have (struct [<f1>] ... [<fn>]). The number of paths is the
cross product of each field’s paths. Thus if there are (struct [4] [5] [2] [1]) paths for each field the number of resulting
paths would be 4 * 5 * 2 * 1 = 40 paths. In the case of python
we use itertools.product to calculate all combinations.

Lets look at the concrete example above. A high level representation
of this structure (not the actual lisp representation).

(struct StructA
 (field FieldA)
 (union
 (struct StructB
 (field FieldB)
 (vector
 (struct StructD
 (field FieldD))))
 (struct StructC
 (field FieldC))))

Lets walk through the tree is post order traversal (L->RN).

	(field FieldA) -> [(field FieldA 0)]

	(field FieldB) -> [(field FieldB 1)]

	(field FieldD) -> [(field FieldD 2)]

	(struct StructD [(field FieldD 2)]) -> [(struct StructD (field FieldD 2))]

	(vector [(struct StructD (field FieldD 2))]) -> [(vector (struct StructD (field FieldD 2)))]

	(struct StructB [(field FieldB 1)] [(vector (struct StructD (field FieldD 2)))]) -> [(struct StructB (field FieldB 1) (vector (struct StructD (field FieldD 2))))]

	(field FieldC) -> [(field FieldC 3)]

	(struct StructC [(field FieldC 3)]) -> [(struct StructC (field FieldC 3))]

	(union [(struct StructB (field FieldB 1) (vector (struct StructD (field FieldD 2))))] [(struct StructC (field FieldC 3))]) -> [(struct StructB (field FieldB 1) (vector (struct StructD (field FieldD 2)))), (struct StructC (field FieldC 3))]

	(struct StructA [(field FieldA 0)] [(struct StructB (field FieldB 1) (vector (struct StructD (field FieldD 2)))), (struct StructC (field FieldC 3))]) -> [(struct StructA (field FieldA 0) (struct StructB (field FieldB 1) (vector (struct StructD (field FieldD 2)))), (struct StructA (field FieldA 0) (struct StructC (field FieldC 3))]

This shows the whole process and we see that it results in 2 datatypes:

	(struct StructA (field FieldA 0) (struct StructB (field FieldB 1) (vector (struct StructD (field FieldD 2))))

	(struct StructA (field FieldA 0) (struct StructC (field FieldC 3))

These structures are most importantly deterministic and we can
calculate all the positions for fields and easily write a parser for
these datatypes. The only slight difficulty is in handling vectors
since this makes the location of datafields depend on the length etc.

This transformation then wraps these paths in datatype nodes. It is
important to preserve the lisp like datastructure to make future
transformation compose nicely. Importantly we can see from this that
the growth of the number of datatypes is roughly proportional to the
product of the lengths/cardinality of all unions (ends up being
slightly less depending on nesting).

(list
 (datatype (struct StructA (field FieldA 0) (struct StructB (field FieldB 1) (vector (struct StructD (field FieldD 2))))))
 (datatype (struct StructA (field FieldA 0) (struct StructC (field FieldC 3)))))

Realize Conditions

Once we have all the resulting datatypes we then need to link
conditions with their corresponding fields. As mentioned in the
previous translation each field has been assigned a field id (not
shown in the example above).

Take for example the condition FieldReference('FieldB') == 0x10
within the StructB struct. Within bitnest this has an equivalent
form.

(eq (field_reference "FieldB") (integer 0x10))

Once this traversal is complete the field id is updated to reflect the
actual id within the tree. This is a little trickier than just
aimlessly searching for the field within the tree since there can be
multiple occurences of a field within a tree. Thus we have to traverse
the tree to find the field from the place that the condition was
added.

(eq (field_reference "FieldB" 1) (integer 0x10))

Realize Offsets

Take the example above. While not included in this high level
description we have the size (number of bits).

	FieldA (4 bits)

	FieldB (8 bits)

	FieldC (8 bits)

	FieldD (8 bits)

(list
 (datatype (struct StructA (field FieldA 0) (struct StructB (field FieldB 1) (vector (struct StructD (field FieldD 2))))))
 (datatype (struct StructA (field FieldA 0) (struct StructC (field FieldC 3)))))

When we look at both of the datatypes we get the following structures:

	[FieldA FieldB Vector(FieldD)]

	[FieldA FieldC]

Also note that the Vector has length equal to the value of
FieldB. From this we have all we need to calculate offsets from the
beginning of the structure along with the total length. Lets start
with the second one since the calculation is easier.

[FieldA FieldC]:

	FieldA (size 4) (offset 0)

	fieldC (size 8) (offset 0 + 4)

With the total size being 12 bits for the second datatype. Now lets
look at the first datatype.

[FieldA FieldB Vector(FieldD)]

	FieldA (size 4) (offset 0)

	FieldB (size 8) (offset 0 + 4)

Now the next part is trickier we know that the total length of the
vector is equal to FieldB. We need to calculate the size of the
contents of Vector to know the total size of the datatype. In this
case the inner structure is only FieldD but this can be more complex
and we need to recursively calculate the size. This means we can only
know the size of the message at runtime. This is okay we have a
symbolic formula to calculate the size. The size of FieldD is 8
bits. Thus the formula for offset for FieldD (assume we assign i to
the vector index.

	FieldD (size 8) (offset 0 + 4 + 8 + (i * 8))

And the total size of the message is 0 + 4 + 8 + (FieldReference(FieldC) * 8). Since bitnest was designed to be
symbolic this is a perfectly fine representation of the total length.

Arithmetic Simplify

This transformation is critical to for having easy to read
expressions. Currently only addition operations are simplified. As
additional simplification is needed this routine will be
improved. Shows how expressions are simplified.

(+ 1 (+ a 3)) -> (+ 1 a 3) -> (+ a 4)
(+ 1 (+ 2 3)) -> (+ 1 2 3) -> (+ 6) -> 6

Parser Datatype

The parser datatype takes all of the information from the previous
transformations to generate a program that can parse the datatype. All
of the previous transformations were critical in getting enough
information to write the program.

(list
 (datatype (struct StructA (field FieldA 0 4 0) (struct StructB (field FieldB 1 8 4) (vector (struct StructD (field FieldD 2 8 (12 + i*8))))))) # total size 12 + FieldReference(FieldC) * 8
 (datatype (struct StructA (field FieldA 0 4 0) (struct StructC (field FieldC 3 8 4))))) # total size 12.

Additionally we have a condition for StructB.

	(eq (field_reference "FieldB" 1) (integer 0x10))

In pseudo code we want to create a program that says the following:

if (FieldB == 0x10) and (length of message is 12 + FieldReference(FieldC) * 8):
 # it is datatype 1!
if (lenth of message is 12):
 # it is datatype 2!

This is exactly what this transformation generates. This is the power
of having composible transformations! Note that this is a high level
(not totally accurate portrayal of the programming AST). Notice that
this AST that is emitted is language independent and can easily create
efficient c and python code.

(statements
 (if (and (eq (field FieldB) 0x10) (len message (add 12 (mul (field_reference FieldC) 8))))
 (assign datatype 1)
 (if (len message 12)
 (assign datatype 2))))

Analysis Pass

The analysis passes do not return an Expression object. They do
however ruturn python datastructures about the AST after running the
analysis.

Inspect Datatype

Take the following example above once we have all the offsets
etc. This analysis stage can be run earlier in the process it just
requires datatype nodes to exist.

(list
 (datatype (struct StructA (field FieldA 0 4 0) (struct StructB (field FieldB 1 8 4) (vector (struct StructD (field FieldD 2 8 (12 + i*8))))))) # total size 12 + FieldReference(FieldC) * 8
 (datatype (struct StructA (field FieldA 0 4 0) (struct StructC (field FieldC 3 8 4))))) # total size 12.

Several outputs come from the analysis for each datatype:

	fields

	conditions

	regions

fields is the list of fields that result from the datatype:

	[FieldA FieldB Vector(FieldD)]

	[FieldA FieldC]

conditions is the list of conditions for each datatype:

	(eq (field_reference "FieldB" 1) (integer 0x10))

	N/A

regions is so that we can understand the regions that a given
struct/vector take.

	StructA (0-4 bits), StructB (4-12 bits), Vector (12 - 12 + FieldReference(FieldC) * 8), StructD (12 - 12 + FieldReference(FieldC) * 8)

	StructA (0-4 bits), StructC (4-12 bits)

Backend

Currently there is only a python backend and soon a c backend. But
future ones should be easy enough to add.

Python

Take the following expression to see how the python backend works.

(eq (add (integer 1) (variable "a")) (integer 3))

We visit the tree in post order.

	(integer 1) -> ast.Constant(1)

	(variable "a") -> ast.Name("a")

	(add ast.Constant(1) ast.Name("a")) -> ast.BinOp(ast.Add() ast.Constant(1) ast.Name("a"))

	(integer 3) -> ast.Constant(3)

	(eq ast.BinOp(ast.Add() ast.Constant(1) ast.Name("a")) ast.Constant(3)) -> ast.Compare(ast.BinOp(ast.Add() ast.Constant(1) ast.Name("a")), ops=[ast.Eq()], comparators=[ast.Constant(3)])

Now that we have the ast representation in python
ast.Compare(ast.BinOp(ast.Add() ast.Constant(1) ast.Name("a")), ops=[ast.Eq()], comparators=[ast.Constant(3)]) we can
astor.tosource(...) on the ast and get the source code.

((1 + a) == 3)

Design Document

Conditional Nested Data Structures

This is the design document for as I am calling it not “bitnest” for
“nested bits”. The aim to explain the motivation for this package and
how it is a needed piece in efficiently parsing binary packets of
data. We hope to address why this is being built as well and how this
is going to be built.

Background

1553 Motivating Example

This work was motivated for client work that we were doing on parsing
the chapter 10 specification. A detailed document on the specification
can be found on the irig106
site [http://www.irig106.org/docs/106-15/chapter10.pdf] however still
leaves some ambiguity. Chapter 10 is a complex specification with many
nested parts see the project
atac/libirig106 [https://github.com/atac/libirig106] for a detailed
list of all the unique packet types. The key here is that these
protocols are well defined. In the image bellow we show a fake but
representative specification of a 1553 message (a type of chapter 10
packet) that also tries to detail some of the challenges.

[image: _images/simplified-1553-packet.png]simplified 1553 packet

You will see that a 1553 message is composed of a header that consists
of a bus id that is an unsigned integer of 8 bits followed by either
an RTToController or ControllerToRT frame. In order to determine
which one it is we have to check the remote terminal address (5 bit
unsigned integer) which both have. If the remote terminal address is
0x1f or 31 it is a ControllerToRT message otherwise it is an
RTToController message. Additionally if it is an RTToController
frame the number of words must be equal to zero. If it is a
ControllerToRT message then the frame is followed by N 16 bit
DataWords where N is equal to the number of words. To summarize
there are two packets “datatypes” that are described by this
specification.

[image: _images/conditional-realized-nested-structures.png]conditional nested structures

The first datatype is 1553 Message[bus id, RTToController[CommandWord[remote terminal address, number of words]]] that maps out to a record of bus id, remote terminal address, and number of words. Notice how this datatype has a well
defined static length 8 bits + 5 bits + 3 bits and has three
conditions associated with it remote_terminal_address != 31, number of words == 0, and the length of the packet must be 16 bits.

The second datatype is a bit more complex 1553 Message[bus id, RTToController[CommandWord[remote terminal address, number of words], *DataWord[bits]]]. Where * indicates zero or more of the given
datatype (a vector) and * is equal to the number of words
field. Similar to datatype 1 the length is well defined though symbol
8 bits + 5 bits + 3 bits + (16 bits) * number of words. We also have
two associated conditions: remote terminal address must equal 31 and
the length of the packet must match the symbolic formula above.

Data Type Complications

While not shown in this example above additional complications show up
in the fields seen within the chapter 10 data words section. First off
we realize the fact that we are dealing with non byte-aligned fields
of non standard lengths.

Non byte aligned makes it much more difficult to access the value of a
given fields due to complex masking and shifting operations.

Non standard lengths pose a more complex problem however. Lets
consider the case of a 6 bit two’s compliment signed
integer [https://en.wikipedia.org/wiki/Two%27s_complement]. Ignoring
edianess. In this standard the left most bit designates the sign of
the integer: 1 negative and 0 positive. This alone brings the problem
of translating this into a standard size that can be operated on take
for example 100111. If we would like to operate on this as an 1 byte
signed integer we need to move the left 1 left two places to
1XX00111. But what to do with the X’s? Well in the two’s
compliment representation we will pad with 0 if it is positive and
1 if it is negative with our final result being 11100111. This
problem becomes even more complicated when you consider the IEE-753
floating point
specification [https://en.wikipedia.org/wiki/IEEE_754]. How do you
handle different size exponent and decimal bits.

At the end of the day once a given packet has been parsed these data
types must be accessible via byte aligned fields to allow for
efficient computation. However this step should be deferred as long as
possible since “realizing/creating” these values requires moving
data. This step should not be required for matching a given packet
with a specific data type.

Similar Problems and Approaches

Our use case is not unique. There are many binary protocols that are
well defined similar to the chapter 10 specification. Many I would say
are simpler protocols.

	Ethernet, IP, TCP/UDP, HTTP (of course with many more branches for
each layer) is the dominant use case

	pyatv [https://github.com/postlund/pyatv] decodes a well defined binary protocol for audio and video

	etherium protocol brownie [https://github.com/eth-brownie/brownie], raiden [https://github.com/raiden-network/raiden]

	scancode [https://github.com/nexB/scancode-toolkit] scans binary
files to determine the given file type and information about the file

	nmigen [https://github.com/m-labs/nmigen] interacting with emulated hardware devices

Complex well defined binary protocols are everywhere where information
has to travel over the wire where bandwidth is at a premium. There are
toolkits designed for working with some of these problems primarily
in the networking space. We would like to highlight some of them:

Scapy

Scapy [https://scapy.readthedocs.io/en/latest/index.html] is a python toolkit to crafting up and reading network
packets. In addition these have a built in high level language for
describing new
frames [https://scapy.readthedocs.io/en/latest/build_dissect.html#simple-example]. I’d
argue this is a high level description of a frame within a packet.

class Disney(Packet):
 name = "DisneyPacket "

 fields_desc=[
 ShortField("mickey",5),
 XByteField("minnie",3) ,
 IntEnumField("donald", 1, { 1: "happy", 2: "cool" , 3: "angry" })
]

Lets say the Disney packet is at the application layer in the
network stack. To me the missing piece here is given a full ethernet
packet how do I efficiently parse it and return whether it is a Disney
packet or HTTP packet? ScaPy doesn’t seem to have an efficient backend
for parsing these custom packet types and does not have the logic to
inspect the packet to determine if it is an HTTP packet (e.g. the
first 4 bytes are HTTP) or if it is a Disney packet. The hope is
that our proposed solution could be a backend for Scapy to
efficiently parse network packets. Additionally currently scapy
translates this problem into a python struct within the stdlib. For
example the following would translate to.

import struct

packet = ...
struct.unpack('h3BB', packet)

However here see that we are conflating identifying the packet type
and parsing the packet type. Also here they are working with bytes and
not bits.

P4 Programming Language

Taken from wikipedia “P4 is a programming language for controlling
packet forwarding planes in networking devices, such as routers and
switches”. It is a domain specific language for describing network
packets. This tool is specialized for the efficient parsing of network
packets and based on a filtering specification certain packets are
rejected and accepted. See here for a list of examples of the
language [https://github.com/p4lang/tutorials/tree/master/exercises]. Below
is a partial code example. Looking at the
specification [https://github.com/p4lang/p4-spec/blob/4256308d5f9f87a9346bb3fbdbe6c9da661ce5d4/p4-16/spec/P4-16-spec.mdk#L1802]
we can already see limitations on the data types that you can work
with (e.g. no floating point support and non-signed two compliment
integers). However it does support non-byte aligned bits. It would
definitely be worth investigating how P4 works.

header ethernet_t {
 macAddr_t dstAddr;
 macAddr_t srcAddr;
 bit<16> etherType;
}

header ipv4_t {
 bit<4> version;
 bit<4> ihl;
 bit<8> diffserv;
 bit<16> totalLen;
 bit<16> identification;
 bit<3> flags;
 bit<13> fragOffset;
 bit<8> ttl;
 bit<8> protocol;
 bit<16> hdrChecksum;
 ip4Addr_t srcAddr;
 ip4Addr_t dstAddr;
}

struct metadata {
 /* empty */
}

struct headers {
 ethernet_t ethernet;
 ipv4_t ipv4;
}

...

Traditional Approach

The P4 language and Scapy show a “high level” of representing binary
protocols without necessarily specifying “how” to parse the
packets. This however is not the typical approach. In the case of
ethernet packets the dominant library is
libpcap [https://github.com/the-tcpdump-group/libpcap] and related
wrappers around this tool. These are hand written parsers for the
given protocols they are given to parse. Take the 1553 problem stated
above. Here I’d like to show pseudo code of a solution to demonstrate
the typical approach.

class CommandWord:
 length = 8

 def __init__(self, packet):
 self.packet = packet

 def is_rttocontroller_frame(self):
 return self.packet[0:5] != 0x1f and self.packet[5:8] == 0x0

 def is_controllertort_frame(command_word)
 return command_word[0:5] == 0x1f

 @property
 def number_of_words(self):
 return int(command_word[5:8])

class DataWord:
 length = 16

def parse(packet):
 header_length = 8 + CommandWord.length

 # can't parse command words unless correct length
 if len(packet) < header_length:
 return "packet not known"

 command_word = CommandWord(packet[8:16])

 if command_word.is_rttocontroller_frame():
 if len(packet) == header_length:
 return "datatype 1"
 elif command_word.is_controllertort_frame():
 if len(packet) == (header_length + DataWord.length * command_word.length_of_words):
 return "datatype 2"

There certainly may be ways to simplify this code and write it better
but one thing remains. The code has been expressed in this way so that
it is easier to reason about. But what happends when you add an
additional field to say the header. You now need to update the parser
on header lengths etc. and there may be other new complex checks that
you need to make. I believe that this is hard work that a compute
could also generate from a high level specification of the data
structures. The “checks” can be encoded as conditions that much be
matched.

So to highlight some issues:

	writing this code efficiently requires low level programming language knowledge

	adding new fields can be tedious and non-intuitive how they change the parser

	the parser is not self documenting. there is no way to self
document the grammar that this parser handles

	we not have one more parser for a specific binary protocol

	testing requires example data from the protocol which for some
applications where the packets are classified is difficult for
collaboration with open source

Implementation

I would argue that is starting to look like a well defined grammar of
sorts. In Chomsky’s
Hierarchy [https://en.wikipedia.org/wiki/Chomsky_hierarchy] this feels
almost like a regular expression. To me this is partially validated
when I look at the P4
specification [https://github.com/p4lang/p4-spec/issues/217]. In this
issue and several other issues they describe P4 as a finite state
machine and not turning complete. I’d even say this is a grammar that
the code paths can be accounted for to create a highly optimized
parser to parse the packets. We are proposing a high level declarative
representation of the binary protocol. For example a representation of
the 1553 Message shown above.

from bitnest.field import Struct, UnsignedInteger, Bits, Union, FieldRef, Vector

class CommandWord(Struct):
 fields = [
 UnsignedInteger("remote_terminal_address", 5),
 UnsignedInteger("number_of_words", 3),
]

class DataWord(Struct):
 fields = [
 Bits("data", 16),
]

class RTToController(Struct):
 name = "Remote Terminal to Controller"

 fields = [
 CommandWord,
 Vector(DataWord, length=FieldRef("CommandWord.number_of_words")),
]

 conditions = [
 (FieldRef("CommandWord.remote_terminal_address") == 0x1F)
]

class ControllerToRT(Struct):
 name = "Controller to Remote Terminal"

 fields = [
 CommandWord,
]

 conditions = [
 (FieldRef("CommandWord.number_of_words") == 0x0)
]

class MILSTD_1553_Message(Struct):
 """This is a mock specification for a MILSTD 1553 Message to be as
 simple as possible while still representative of the difficulty of
 handling specifications.

 """

 name = "MIL-STD 1553 Mock Message"

 fields = [
 UnsignedInteger("bus_id", 8),
 Union([
 RTToController,
 ControllerToRT,
]),
]

Here we describe a set of data structures which reference each other
and data types within the fields attribute. Additionally there are a
set of conditions that must be met in order for the given structure
to be a valid path in determining the packet type. Said in another way
if the conditions are not met for a given class e.g. ControllerToRT
we know that the packet does not contain the path through the
ControllerToRT and it is either an unknown packet datatype or a
ControllerToRT packet. Using this high level description of the
structures we can self document the protocol. This is also where the
name for this work came from since it is a nested set of structures
that satisfy given conditions. Bitnest already supports generating a
graph visualization of the specification and markdown document of the
specification shown below.

MILSTD_1553_Message

This is a mock specification for a MILSTD 1553 Message to be as
simple as possible while still representative of the difficulty of
handling specifications.

Structure

name	data type	number of bits	description
bus_id	UnsignedInteger	8	
	Union[[RTToController](#RTToController), [ControllerToRT](#ControllerToRT)]		

RTToController
Structure

name	data type	number of bits	description
	[CommandWord](#CommandWord)		
	Vector		[DataWord](#DataWord)

Conditions

- 'CommandWord.remote_terminal_address' == 31

CommandWord
Structure

name	data type	number of bits	description
remote_terminal_address	UnsignedInteger	5	
number_of_words	UnsignedInteger	3	

DataWord
Structure

name	data type	number of bits	description
data	Bits	16	

ControllerToRT
Structure

name	data type	number of bits	description
	[CommandWord](#CommandWord)		

Conditions

- 'CommandWord.number_of_words' == 0

CommandWord

Structure

name	data type	number of bits	description
remote_terminal_address	UnsignedInteger	5	
number_of_words	UnsignedInteger	3	

[image: _images/bitnest-1553-graphviz.png]graphviz output

While it is nice to be able to create documentation and visualize the
specification ultimately it comes down to parsing
performance. bitnest will act as a compiler of this high level
domain specific python representation of nested conditional data
structures and generate a parser.

In general the parser implementation should not matter. All that
matters is that a performant program is produced. The easiest target
that we see at this moment is numba which will JIT (just in time)
produce an llvm compiled code to parse a given packet.

The pseudo code could go as follows. Since this is pseudo code of
course the actual indexing and comparison of bits will be done via bit
masks etc. but I’ll leave that as an implementation
detail. Additionally since we know the packets that we are parsing we
can optimize these condition evaluations as to minimize the number of
evaluations and provide the shortest path for the most common
packets. Similar to PGO in
gcc [https://en.wikipedia.org/wiki/Profile-guided_optimization] though
in our case we would analyze the data to inform our compiler on the
optimal code paths.

def parser(packet):
 if len(packet) == 16 and packet[8:11] != 0x1f and packet[11:16] == 0:
 return "datatype 1"
 elif len(packet) >= 16 and len(16 + packet[11:16] * 16) == len(packet) and packet[8:11] == 0x1f:
 return "datatype 2"
 else:
 return "I have not clue what packet type this is!"

Would a human ever write this code? No! It is not maintainable and
would be extremely prone to bugs. We are proposing a way to describe a
given binary protocol at a high level and then implement a compiler to
produce a parser of binary packets. Much like a regular expression is
compiled into a parser for arbitrary strings of bytes.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to bitnest’s documentation!

 		
 Contributing

 		
 Architecture

 		
 Frontend

 		
 Transform/Analysis

 		
 Backend

 		
 End-To-End Example

 		
 Internal AST Nodes

 		
 Arithmetic Nodes

 		
 Field Nodes

 		
 Programming Nodes

 		
 Python DSL

 		
 Passes

 		
 Transform Pass

 		
 Analysis Pass

 		
 Backend

 		
 Design Document

 		
 Conditional Nested Data Structures

 		
 Background

 		
 1553 Motivating Example

 		
 Data Type Complications

 		
 Similar Problems and Approaches

 		
 Traditional Approach

 		
 Implementation

_images/bitnest-1553-graphviz.png
MILSTD_1553_Message

bus_id [UnsignedInteger |8

Union)

RTToController

ControllerToRT

W
CommandWord (Command ord
Vector
CommandWord
te_terminal_add UnsignedInt 5 DataWord
remote_terminal_address ns!gne nteger Jata B Te
number_of words UnsignedInteger|3

_static/minus.png

_static/plus.png

_images/conditional-realized-nested-structures.png
Simplified MIL-STD 1553 Message[RTToControllerfCommandWord]]

remote terminal address number of words

00000011 01101 [oo

e[ControllerToRT[CommandWord, *DataWord

Simplified MIL-STD 1553 Messag ‘
l

10101101

00000001 11111 _ 01010111

_images/simplified-1553-packet.png
Simplified MIL-STD 1553 Message

Union[RTToController, ControllerToRT]
Command Word
remote terminal address
I BT
Command Word Data Word(s)
B D e

RTToController

ControllerToRT

_static/file.png

